ABCD — трапеция (BC || AD). О— точка пересечения диагоналей трапеции.BC = 4. OB = 2, AD = 10.1) Найд

Автор COLON:D, Апр. 23, 2024, 00:49

« назад - далее »

COLON:D

Нужны разъяснения по поводу. ABCD — трапеция (BC || AD). О
— точка пересечения диагоналей трапеции.
BC = 4. OB = 2, AD = 10.
1) Найдите длину отрезка OD

Boord

Для решения построим рисунок (https://bit.ly/49jpMH7).

Так как АВСД – трапеция, то треугольники АОД и ВОС подобны по двум углам.

Коэффициент подобия К = ВС/АД = 4/10 = 2/5.

Тогда ОВ/ОД = К = 2/5.

ОД = ОВ * 5/2 = 2 * 5/2 = 5 см.

Ответ: ОД = 5 см.

-------
Амина 11 лет
Давайте разбираться. Дано: ABCD - трапеция О - центр пересечения ||
BC||AD BO=4 cм OD=10 см AC=21 см Найти: АО и ОС. Решение: ОС =Х АО=21-Х 4/Х=10/21-Х Х=14 это ОС АО=21-14