Элпис перевод с греческого

Автор Mad Irishman, Апр. 05, 2024, 15:51

« назад - далее »

Mad Irishman

Что такое эллипс: простое объяснение. Изучаем эллипс: основные понятия и примеры

Ieltblu



Эллипс (от греческого слова "ἔλλειψις" - "ellopsis") - это геометрическая фигура, которая в математике определяется как множество точек на плоскости, сумма расстояний от которых до двух заданных точек (называемых фокусами) постоянна. Эллипс имеет множество интересных свойств и широко применяется в различных областях, включая астрономию, инженерное дело, физику, и даже искусство.

Для начала рассмотрим основные элементы эллипса:

  • Фокусы: Эллипс всегда определяется двумя фокусами (F1 и F2), которые находятся по обе стороны от центра эллипса (C) на большой оси (обычно обозначаемой как 2a).

  • Большая ось: Это самая длинная прямая, проходящая через центр эллипса и оба его фокуса. Обычно обозначается как 2a или "длина большой оси".

  • Малая ось: Это самая короткая прямая, перпендикулярная большой оси и проходящая через центр эллипса. Обычно обозначается как 2b или "длина малой оси".

  • Вершины: Это точки, в которых эллипс пересекается с его большой осью.

  • Вписанный угол: Угол между большой осью и линией, соединяющей центр эллипса с точкой на его окружности. Обозначается как θ (тета).

Теперь рассмотрим формулу эллипса в прямоугольных координатах:

<span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><msup><mi>x</mi><mn>2</mn></msup><msup><mi>a</mi><mn>2</mn></msup></mfrac><mo>+</mo><mfrac><msup><mi>y</mi><mn>2</mn></msup><msup><mi>b</mi><mn>2</mn></msup></mfrac><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 1.3629em; vertical-align: -0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.0179em;"><span style="top: -2.655em;"><span class="pstrut" style="height: 3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.7463em;"><span style="top: -2.786em; margin-right: 0.0714em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span style="top: -3.23em;"><span class="pstrut" style="height: 3em;"></span><span class="frac-line" style="border-bottom-width: 0.04em;"></span></span><span style="top: -3.394em;"><span class="pstrut" style="height: 3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.8913em;"><span style="top: -2.931em; margin-right: 0.0714em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">�</span></span><span class="vlist-r"><span class="vlist" style="height: 0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.2222em;"></span></span><span class="base"><span class="strut" style="height: 1.415em; vertical-align: -0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.07em;"><span style="top: -2.655em;"><span class="pstrut" style="height: 3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">b</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.7463em;"><span style="top: -2.786em; margin-right: 0.0714em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span style="top: -3.23em;"><span class="pstrut" style="height: 3em;"></span><span class="frac-line" style="border-bottom-width: 0.04em;"></span></span><span style="top: -3.4461em;"><span class="pstrut" style="height: 3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.8913em;"><span style="top: -2.931em; margin-right: 0.0714em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">�</span></span><span class="vlist-r"><span class="vlist" style="height: 0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.2778em;"></span></span><span class="base"><span class="strut" style="height: 0.6444em;"></span><span class="mord">1</span></span></span></span></span>

Где:

  • <span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span></span> - полуось вдоль оси x (от центра эллипса до вершины по оси x).
  • <span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi></mrow><annotation encoding="application/x-tex">b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span></span> - полуось вдоль оси y (от центра эллипса до вершины по оси y).
Эта формула показывает, что сумма квадратов расстояний от точек эллипса до его фокусов постоянна и равна <span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>−</mo><msup><mi>b</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">a^2 - b^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 0.8974em; vertical-align: -0.0833em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.8141em;"><span style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right: 0.2222em;"></span></span><span class="base"><span class="strut" style="height: 0.8141em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.8141em;"><span style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span>.

Пример:

Предположим, у нас есть эллипс с большой осью длиной 10 единиц и малой осью длиной 6 единиц. Мы можем использовать формулу, чтобы найти его уравнение:

<span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><msup><mi>x</mi><mn>2</mn></msup><mrow><mo stretchy="false">(</mo><mn>10</mn><mi mathvariant="normal">/</mi><mn>2</mn><msup><mo stretchy="false">)</mo><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mfrac><msup><mi>y</mi><mn>2</mn></msup><mrow><mo stretchy="false">(</mo><mn>6</mn><mi mathvariant="normal">/</mi><mn>2</mn><msup><mo stretchy="false">)</mo><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\frac{x^2}{(10/2)^2} + \frac{y^2}{(6/2)^2} = 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 1.5379em; vertical-align: -0.52em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.0179em;"><span style="top: -2.655em;"><span class="pstrut" style="height: 3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mtight">10/2</span><span class="mclose mtight"><span class="mclose mtight">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.7463em;"><span style="top: -2.786em; margin-right: 0.0714em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span style="top: -3.23em;"><span class="pstrut" style="height: 3em;"></span><span class="frac-line" style="border-bottom-width: 0.04em;"></span></span><span style="top: -3.394em;"><span class="pstrut" style="height: 3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.8913em;"><span style="top: -2.931em; margin-right: 0.0714em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">�</span></span><span class="vlist-r"><span class="vlist" style="height: 0.52em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.2222em;"></span></span><span class="base"><span class="strut" style="height: 1.59em; vertical-align: -0.52em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.07em;"><span style="top: -2.655em;"><span class="pstrut" style="height: 3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mtight">6/2</span><span class="mclose mtight"><span class="mclose mtight">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.7463em;"><span style="top: -2.786em; margin-right: 0.0714em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span style="top: -3.23em;"><span class="pstrut" style="height: 3em;"></span><span class="frac-line" style="border-bottom-width: 0.04em;"></span></span><span style="top: -3.4461em;"><span class="pstrut" style="height: 3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.8913em;"><span style="top: -2.931em; margin-right: 0.0714em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">�</span></span><span class="vlist-r"><span class="vlist" style="height: 0.52em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.2778em;"></span></span><span class="base"><span class="strut" style="height: 0.6444em;"></span><span class="mord">1</span></span></span></span></span>

Упрощая:

<span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><msup><mi>x</mi><mn>2</mn></msup><mn>25</mn></mfrac><mo>+</mo><mfrac><msup><mi>y</mi><mn>2</mn></msup><mn>9</mn></mfrac><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\frac{x^2}{25} + \frac{y^2}{9} = 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 1.3629em; vertical-align: -0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.0179em;"><span style="top: -2.655em;"><span class="pstrut" style="height: 3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">25</span></span></span></span><span style="top: -3.23em;"><span class="pstrut" style="height: 3em;"></span><span class="frac-line" style="border-bottom-width: 0.04em;"></span></span><span style="top: -3.394em;"><span class="pstrut" style="height: 3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.8913em;"><span style="top: -2.931em; margin-right: 0.0714em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">�</span></span><span class="vlist-r"><span class="vlist" style="height: 0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.2222em;"></span></span><span class="base"><span class="strut" style="height: 1.415em; vertical-align: -0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.07em;"><span style="top: -2.655em;"><span class="pstrut" style="height: 3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">9</span></span></span></span><span style="top: -3.23em;"><span class="pstrut" style="height: 3em;"></span><span class="frac-line" style="border-bottom-width: 0.04em;"></span></span><span style="top: -3.4461em;"><span class="pstrut" style="height: 3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.8913em;"><span style="top: -2.931em; margin-right: 0.0714em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">�</span></span><span class="vlist-r"><span class="vlist" style="height: 0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.2778em;"></span></span><span class="base"><span class="strut" style="height: 0.6444em;"></span><span class="mord">1</span></span></span></span></span>

Это уравнение описывает эллипс с центром в начале координат (0,0), большой осью, параллельной оси x, равной 10 единицам, и малой осью, параллельной оси y, равной 6 единицам.

Таким образом, эллипс в данном примере будет выглядеть как овал, центрированный в начале координат, с большей частью своей длины, направленной вдоль оси x и меньшей частью вдоль оси y.